2012

40KW Solar System for Apple Sauce Co

Document Created for The Apple Sauce Co by Luke M Hardy Imhardy@smartconsult.com.au © Smartcom P/L

For further details please contact

Luke M Hardy

SunUp Solar Pty Ltd Mob: 0414 366 866

Web: www.sunupsolar.com.au

31 December 2012

For Further Details in regard to this offer please contact

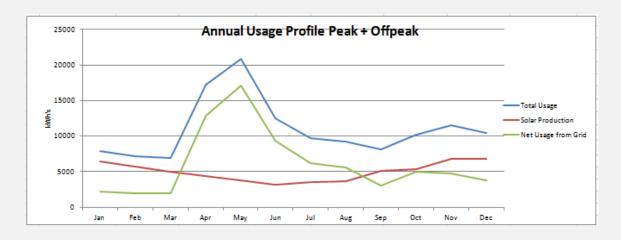
Luke M Hardy

Mob: 0414 366 866

Imhardy@smartconsult.com.au Web: www.smartconsult.com.au

Table of Contents

Problem	4
Site Analysis (Solar only)	
Available Grants	
Solution	
Finance Options	
Assumptions	5
Financial Analysis	6
Appendix A – Suggested location of fixture of solar panels	10
Appendix B - Site Analysis	10
Appendix C – Average data used for economic analysis (Sample over 12 months)	11
Appendix D – Return on Investment Calculator used for economic analysis	13


Key Points for a 40KW Solar PV System at Apple Sauce Co, Applethorpe Qld

Prepared for:- Andrew Georgio, Apple Sauce Co,. Crn. Fred Street and the New England Highway, Applethorpe.

Highlights

- Control and stability of electricity prices over the next 25 years.
- Replacement of up to 46% of power usage (your usage profile)
- Apple Sauce Co may be eligible to apply for a grant under the Clean Technology
 Program (CTP) food & foundries program.
- Payback 1.9 years with grant and 5.7 years without the grant
- Net cost \$21,038 Gross cost \$90,200 less Grant + STC's -\$69,000 (Est)
- Estimated Internal rate of return in excess of 111.5% (with grant)
- Reduces annual bill from \$27,207 to approximately \$14,525.43 (inc GST)
- Multiple self funding finance options
- Estimated CO2-e/kWh Savings of 52.9 tonnes PA (.89 kg CO2-e/kWh, Qld)
- Sustainable future power supply
- Technologically mature and sustainable green generation method
- The PV System is expandable for future site growth
- Assumptions used are very conservative
- Rapid deployment under 3 months for complete installation (roof array)
- Annual maintenance and technical support included in the assumptions

Figure 1 Future New Annual Usage profile

Case Study for a PV Solar 40KW System for at Apple Sauce Co, Applethorpe Qld. Apple Packing Shed & Cool rooms Application

Problem

Electricity is a significant component part of input costs of production and storage of apples for Apple Sauce Co, Applethorpe Qld. Power is used for lighting, fans for cooling, refrigeration for apples, as well as pumps, etc. We were provided with data in the form of a July 2011 – Jun 2012 bills showing peak & off peak usage. This enabled us to analyse the data to provide the information displayed below.

It is estimated that the annual site usage will be approximately 133 MWH in year 12- 2013 at an average price of \$19.17 Cents per kWh hour based on the 12 months data supplied. A total of \$25,286 net GST. Installing Solar will reduce this to between \$13,000 – \$14,000 PA. In an all debt scenario, less the STC's & Grant is cash flow positive during the loan period of 3 years @ 7% Interest.

The cool room roofs are an ideal location to mount solar panels, and do not require a DA from the council. By installing a solar system, it will allow Apple Sauce Co to control their power costs over the next 25 years.

Site Analysis (Solar only)

Further analysis would be required to determine the optimum size of installation and any available grant for this site - taking into consideration:

- a. Roof area & roof loading limits survey, etc. on roofs.
- b. (All the power in this instance from the production from the solar panels would be consumed at the site. This installation would be a "behind the meter installation", with no feed in tariff or power purchase agreement (PPA) negotiations required. No permission is required from Ergon or the network provider).

Available Grants

Apple Sauce Co may be eligible to apply for a grant under the Clean Technology Program (CTP) food & foundries program, as a manufacturing business is classified under ANZSIC code 1199, covered by the program. The grant applied for can be for up to 1/2 approximately of the cost of the installation. (*This grant is also available for other energy saving devices like LED lights, variable speed device's (VSD's), for pumps, augurs etc. It is recommended that a complete energy audit be conducted for all other items as well, as a % of the capital cost is eligible under the grant.)* We have modelled the installation with and without a grant for solar only in this instance.

Solution

In this example the optimum size for the roof space available was determined to be forty Kilowatts (40KW) installation, based on the current usage and load profile. It is projected that Apple Sauce Co would save circa 59,555 kWh PA, and produce an electricity saving of approximately \$11,675, in the first year, replacing 46% of current grid usage. As the system is less than 100KW it will also attract a rebate from the government of 829 STC credits @\$29 each (market price varies each day) or \$24,041. The payback period is approximately 1.9 years (with grant) and 5.7 years (without) using the Federal Governments "return on investment calculator". It is also assumed that all the panels would fit on the roofs as indicated. (Subject to survey, see suggested locations appendix A)

Finance Options

Loan Type	Conditions	CTP Grant	Financier
Traditional corporate loan Standard Guarantees		Yes	Major Bank
Operating lease Standard Guarantees		Yes	Major Bank

Assumptions

It is assumed for the purposes of this exercise that there are no planning issues, and the roofs are able to sustain the required load. Electricity pricing and usage profile have been taken from the data provided. The installation has been costed using industry standard components at a price of \$2.25 per watt or a total of \$90,079 + GST. The assumed grant, debt and equity used are shown in the table below. In calculating the average cost of electricity generated by the solar, we have assumed that the project was financed, using the capital cost less grant equalling the debt, at the same WACC cost of 7% as used by the Government.

The economic analysis Payback, ROI, NPV & IRR was generated using extrapolated data over a year derived from an average of the 12 months data we were given. The sun hours used; Average for the whole 12 months, 5.43 hours at Apple Sauce Co, Applethorpe(ref Bureau of Meteorology).

Capital Structure	Amounts		
Grant	\$45,000		
Debt	\$21,038		
STC's Government Rebate @29 ea	\$24,041		
Totals	\$90,078		

For the purpose of this exercise we have shown the payback with and without the grant but the cost of solar generation with the grant only.

Financial Analysis

1. Before Solar Install

Assumptions	Values
Usage profile throughout the Week	Client Usage Profile Provided
Current Usage PA	133 MWh PA
Current Usage Peak Unknown kW	
Nominal Average Electricity Price	0.1917 Cents per kWh
Annual Electricity Bill Projected	\$25,268 + GST
Usage Assumption ("behind the meter")	All power consumed by site (No feed in tariff required)

2. Current Usage Profile - Peak / Off Peak Periods

Current Usage Profile	Start	End	Annual kWh	%
Peak Energy	700 Hrs	2100 Hrs	65,937	49.957%
Shoulder Energy	0 Hrs	0 Hrs	0	0.000%
Off Peak energy	2100 Hrs	700 Hrs	66,050	50.043%
**Weekends all off peak		Totals	131,987	100.000%

3. After Solar Installation of 40KW System

Assumptions	Values
Average Sun hours per day Apple Sauce Co, Applethorpe Qld (Ref Bureau of Meteorology)	5.44 per day
Usage profile throughout the year	Usage Profile
Revised Usage From Grid PA	73.7 MWh PA
Revised Current Demand Peak kWh Estimated	120.08 kW
Nominal Average Electricity Price	0.191 Cents per kWh

4. Revised Annual Usage Peak / Off Peak Periods

Annual Usage	Start	End	Annual kWh	%
Peak Energy	700 Hrs	2100 Hrs	24704.83	33.50%
Shoulder Energy	0 Hrs	0 Hrs	0.00	0.00%
Off Peak energy	2100 Hrs	700 Hrs	49034.17	66.50%
**Weekends all off peak		Totals	73739.00	100.00%

5. Power Production Profile from a 40KW Solar System

kWh Generated From Solar	Annual kWh	%
Peak Energy	42,539.57	71.4%
Shoulder Energy	0.00	0.0%
Off Peak Energy	17,015.83	28.6%
Total	59,555.40	100.0%

6. Replacement Revenue from Solar

Revenue from Solar	Yearly kWh	Cost per kWh	Annual production in \$	
Total Generated from Solar	59,555.40 0.191		\$11,375	
		Total deemed Revenue or Savings	\$11,375	

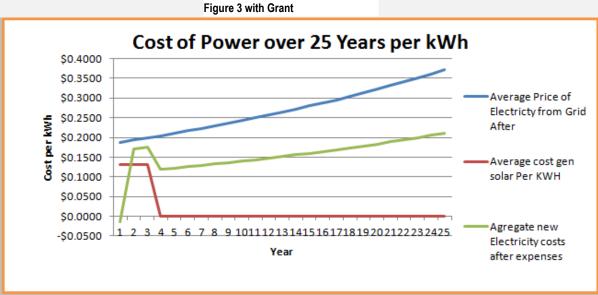
7. Power Usage Split Grid & Solar

Total Power MWh %	Solar Production	Net Grid Purchase	Total Power Used
kWh	59,484	73,739	133,223
% Usage	45.12%	54.88%	100.0%

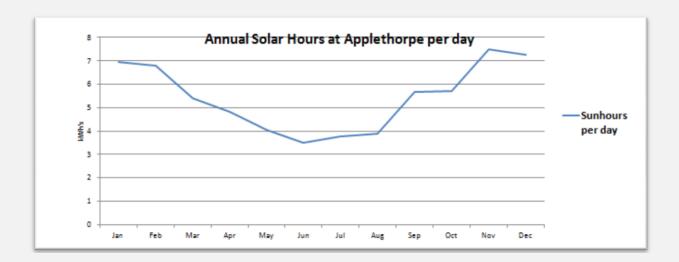
8. Capital Cost Example for 1 MW Solar System

- A. Example cost Installed @2.25 per watt
- B. Project Life 25 Years
- C. With 50% Grant under the Current Government Clean Technology Program
- D. Payback ,ROI, & IRR generated using the Govt "Return On Investment Calculator"*

Capital Structure	Amounts	Inc Grant	Ex Grant
STC's	\$24,045	Payback yrs	Payback yrs
Grant	\$45,000	1.9	5.71
Debt	\$24,041	IRR	IRR
Totals	\$90,078	111.53%	22.91%
Loan Years	3	ROI	ROI
Loan Interest Rate	7.00%	417%	367%


9. Price stability per KWh is assured with generating your own power, with or without the grant.

a. Raw Cost of power production with the grant.


Year	Year 1	Year 3	Year 5	Year 7	Year 10	Year 15	Year 20
Grid + 2.88% PA	\$0.192	\$0.203	\$0.215	\$0.227	\$0.247	\$0.285	\$0.329
Solar Cost Power	\$0.131	\$0.131					
Aggregate Cost Per kWh	-\$0.013	\$0.175	\$0.122	\$0.129	\$0.140	\$0.160	\$0.184

The real story is that Apple Sauce Co has pegged the rise in the price of electricity to 1.74% in year 1 and 1.8% in year 1-3, based on the grid price rising by 2.88% PA. Then having a large reduction in Year 4, slowly increasing over time.

The graph below shows the average sunhours per day from Jul 11 – Jun 2012.

10. Solar System Specification for a 40KW System

Solar Panels

- 1. 157 x Monocrystalline 255 Watt panels
- 2. 3 x SMA Inverters up to 17 KW
- 3. Standard or Custom made roof mounting arrangement (BCA2006, AS4100 and AS1170)
- 4. All installations compliant to current Australian Standards.

11. Warranty

- 1. Solar Panels Warranty 25 years
 - a. 10 year limited warranty of materials and workmanship
 - b. 10 year limited warranty of 90% of power output
 - c. 25 year limited warranty of 80% of power output
 - d. Warranty backed by China Export & Credit Insurance Corporation (SINOSURE) is a state-funded policy-oriented insurance company (or similar).
- 2. Inverters Variable
 - a. Warranty -5 25 years (optional Cost dependent)
 - b. Usually excess inverters are purchased at the outset to swap out defective units as well as a warranty.

12. Maintenance Contract for a 40MW System

- A long term maintenance contract can be established to clean and maintain the solar panels in a roof array, and replace and repair any panels that became defective as well as maintain the electrical installation and inverters. (this is allowed for in the economic analysis)
- 4. If a ground array, then maintenance would be quoted separately as mowing and other services are required in addition to standard maintenance services.

Appendix A – Suggested location of fixture of solar panels

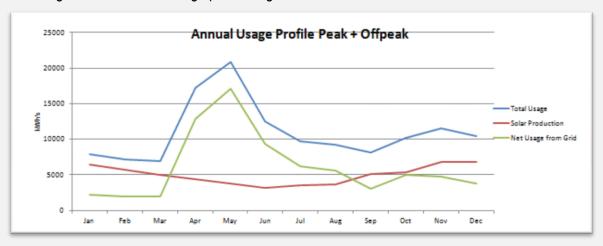
Site :- Apple Sauce Co, Crn Fred Street and the New England Highway, Applethorpe Qld - Brief Desktop Analysis

The north facing roofs of the various warehouses on the site would conservatively accommodate 157 panels using custom racking. We have assumed the roofs are able to accept the required load. (Subject to survey)

^{**}Numbers contained within the picture denote the possible location of solar panels.

Appendix B - Site Analysis

In this analysis, a system size of 40KW was chosen as the optimum fit for both the available roof area, (see above), the amount of power consumed, and power usage profile for the site.


This was then plotted against the projected production of power from the solar panels, and the calculated net usage from the grid over a 7 day period. It shows that the system could potentially overflow onto the grid at peak times, in Oct- Feb (highest sun hours) but with a backflow shunt in place, before the meter, would stop this from happening. Most of the overflow happens on the weekend. A data file from the Bureau of Meteorology http://www.bom.gov.au/climate/data/ was obtained to ascertain the average sun hours for Apple Sauce Co, Applethorpe in 2011. These were as follows:

Year	20 11	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average Sun Hours	5.44	6.94	6.81	5.42	4.81	4.06	3.50	3.78	3.89	5.67	5.69	7.50	7.28

The annual usage was taken from the bills as provided from July 11- June 12 from Apple Sauce Co. These were then plotted against the average sun hours for the month shown beside the table. The net solar line is used to define the resultant net usage pattern from the grid.

Total usage in blue and new usage plotted in green.

Appendix C – Average data used for economic analysis (Sample over 12 months)

a. Current Average grid usage over a sample average week

Data shown is the usage in kWh over 1 year, derived from bills as provided.

Total kWh Per Month	Peak	Shoulder	Offpeak	Total
Jan	3941	0	3994	7935
Feb	3591	0	3592	7183
Mar	3466	0	3404	6870
Apr	7410	0	9826	17236
May	9549	0	11279	20828
Jun	7234	0	5302	12536
Jul	4780	0	4941	9721
Aug	4780	0	4492	9272
Sep	4720	0	3441	8161
Oct	5291	0	4942	10233
Nov	5874	0	5643	11517
Dec	5301	0	5194	10495
Per Annum	65937	0	66050	131987

b. Current Average solar production over a sample average year

Data shown is the average sample solar production over 1 year, from a 40KW system with the average sun hours changing per month per the BOM results.

Solar Production kWh	Peak	Shoulder	Offpeak	Total
Jan	4617	0	1847	6464
Feb	4087	0	1635	5722
Mar	3601	0	1441	5042
Apr	3092	0	1237	4329
May	2696	0	1079	3775
Jun	2252	0	901	3153
Jul	2512	0	1005	3516
Aug	2586	0	1034	3620
Sep	3646	0	1458	5104
Oct	3786	0	1514	5300
Nov	4826	0	1930	6756
Dec	4839	0	1936	6774
Per Annum	42540	0	17016	59555

c. Net usage over a year based on current usage less solar production

Data shown is net grid consumption, less the production from a 40KW system .

Net Usage from Grid kWh	Peak	Shoulder	Offpeak	Total
Jan	0	0	2147	2147
Feb	0	0	1957	1957
Mar	0	0	1963	1963
Apr	4318	0	8589	12907
May	6853	0	10200	17053
Jun	4982	0	4401	9383
Jul	2268	0	3936	6205
Aug	2194	0	3458	5652
Sep	1074	0	1983	3057
Oct	1505	0	3428	4933
Nov	1048	0	3713	4761
Dec	462	0	3258	3721
Per Annum	24705	0	49034	73739

Appendix D – Return on Investment Calculator used for economic analysis

CLIUMA ON HANDSHIEMI O	ALUULATUK												
/ersion 2		_					RESULTS	Marin Tarana					
STEP 1 - Enter applicant's ABN		_					Discount rate			7.0%			
STEP 2 - Enter first financial ye			2012				Net Present			\$112,436			
TEP 3 - Breakdown project e:	xpenses for each year	r in the cells b	oelow.			1	nternal Rate	of Return (v	without gr.	22.9%			
		2012	2013	2014	2015	1	Return On In	vestment (v	without gra	367%			
	Eligible	\$90,079		T			Payback per	riod (of total	nmiect or	5.7			
	Ineligible	400,010					Net Present			\$157,436			
	allongione					ľ	vot i rodont	VOISC (VIII)	gruny	\$157,450			
STEP 4 - Enter the expected or	rant ratio (1:1 2:1 or 1	11)	1 1				Internal Rate	of Return (s	with orant	111.5%			
OR enter in the total of							Return On In			417%			
STEP 5 - Enter the average eff			25 Y	ears			Payback per			1.9			
STEP 6 - How many years un				ears		L	ayuuun po	ιου τοι αργι	rudiit 5 Uui	1.0			
STEP 6 - now many years un STEP 7 - Enter the name of Fu		discu!		5555	Enter in the a	onninnafo.	numeral fire			intox in the e	nolinario 6	al arian issu	eases per y
	city Savinos	42.540 k	Mh		Enter in the a Peak Electric		current lue	\$0.202 k		enter in the a Peak Electric		ei price incr	2.9% kl
Off-Peak Electri		17.016 k						\$0.202 K				-	
Shoulder Electri		and Justice In	Wh		Off-Peak Ele		-			Off-Peak Elec		-	2.9% k\
Demand Cha			Wh		Shoulder Ele	-	-			Shoulder Ele		-	2.9% k\
			Init		Demand Cha	arge	-			emand Cha	arge	-	2.9% k\
Fu	el 5 Savings				Fuel 5					uel 5		. L	U
		Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10	Year 11	Year 12
	Totals	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
eak Electricity	1,063,489	42,540	42,540	42,540	42,540	42,540	42,540	42,540	42,540	42,540	42,540	42,540	42,540
Off-Peak Electricity	425,396	17,016	17,016	17,016	17,016	17,016	17,016	17,016	17,016	17,016	17,016	17,016	17,016
Shoulder Electricity			•	•	•	•		•	,	,		•	,
emand Charge	1			,		,		•	,	,		•	
uel 5	1			,		,		,	,	,		,	
		2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Peak Electricity	,	\$0.202	\$0.208	\$0.214	\$0.220	\$0.226	\$0.233	\$0.240	\$0.246	\$0.254	\$0.261	\$0.268	\$0.276
Off-Peak Electricity	,	\$0.181	\$0.200	\$0.192		\$0.203	\$0.209	\$0.215	\$0.221	\$0.237	\$0.234	\$0.241	\$0.248
Shoulder Electricity	,	\$0.101 P	40.100	ψυ.152 F	\$0.151 F	₩.200 F	₩0.203	\$0.215 P	₩.221	40.221	, QU.234	₩.241	₩.240
lemand Charge	,		,	,		,	. ,		,	,	, ,	,	
uel 5	,			,	. ,	,	. ,			,	. ,	,	
uei 3	-												
		2012	0042	2014	DOLE	2010	0047	0040	2010	2022	2024	2022	2022
		2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Other net return (\$) STC's	24,041	\$24,041											
Other costs (\$)	22,333	\$893	\$893	\$893	\$893	\$893	\$893	\$893	\$893	\$893	\$893	\$893	\$893
TEP 11 (Optional) - Enter any		options and ap	proach										
LGC Rate per	kWh			0.036 1	LGC Rate								
Maintainence Rate per		\$0.015											